On improved bound for measure of cluster structure in compact metric spaces
نویسنده
چکیده
A compact metric space $(X, \rho)$ is given. Let $\mu$ be a Borel measure on $X$. By $r$-cluster we mean a measurable subset of $X$ with diameter at most $r$. A family of $k$ $2r$-clusters is called a $r$-cluster structure of order $k$ if any two clusters from the family are separated by a distance at least $r$. By measure of a cluster structure we mean a sum of clusters measures from the cluster structure. In our previous work we showed that under some parametric restrictions for distance distribution measure of maximal cluster structure $\mu(\mathcal{X})^*$ is close $\mu(X)$ and lower bound for $\mu(\mathcal{X})^*$ converges to $\mu(X)$ when corresponding parameters tend to 0. However, this bound asymptotically unimprovable. We propose an additional restriction for distance distribution that is responsible for balance of cluster's measure in cluster structure. This restriction allows to significantly improve previous bound in asymptotic sense.
منابع مشابه
On the Structure of Metric-like Spaces
The main purpose of this paper is to introduce several concepts of the metric-like spaces. For instance, we define concepts such as equal-like points, cluster points and completely separate points. Furthermore, this paper is an attempt to present compatibility definitions for the distance between a point and a subset of a metric-like space and also for the distance between two subsets of a metr...
متن کاملWeighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces
In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملON COMPACTNESS AND G-COMPLETENESS IN FUZZY METRIC SPACES
In [Fuzzy Sets and Systems 27 (1988) 385-389], M. Grabiec in- troduced a notion of completeness for fuzzy metric spaces (in the sense of Kramosil and Michalek) that successfully used to obtain a fuzzy version of Ba- nachs contraction principle. According to the classical case, one can expect that a compact fuzzy metric space be complete in Grabiecs sense. We show here that this is not the case,...
متن کاملOn quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
متن کاملInterdependence of clusters measures and distance distribution in compact metric spaces
A compact metric space $(X, \rho)$ is given. Let $\mu$ be a Borel measure on $X$. By $r$-cluster we mean a measurable subset of $X$ with diameter at most $r$. A family of $k$ $2r$-clusters is called a $r$-cluster structure of order $k$ if any two clusters from the family are separated by a distance at least $r$. By measure of a cluster structure we mean a sum of clusters measures from the clust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.08286 شماره
صفحات -
تاریخ انتشار 2017